
The FeasNewt Benchmark
Todd S. Munson

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
Email: tmunson@mcs.anl.gov

Paul D. Hovland
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Email: hovland@mcs.anl.gov

Abstract—We describe the FeasNewt mesh-quality op-
timization benchmark. The performance of the code is
dominated by three phases—gradient evaluation, Hes-
sian evaluation and assembly, and sparse matrix-vector
products—that have very different mixtures of floating-
point operations and memory access patterns. The code
includes an optional runtime data- and iteration-reordering
phase, making it suitable for research on irregular mem-
ory access patterns. Mesh-quality optimization (or “mesh
smoothing”) is an important ingredient in the solution of
nonlinear partial differential equations (PDEs) as well as
an excellent surrogate for finite-element or finite-volume
PDE solvers.

I. INTRODUCTION
The FeasNewt mesh-quality optimization code is a

useful benchmark for two reasons. First, mesh-quality
optimization is an important ingredient in the solution
of partial differential equations (PDEs). Second, it is
a compact and portable surrogate for the solution of
nonlinear PDEs using unstructured meshes. The gradi-
ent evaluation, Hessian computation, and linear solves
in FeasNewt have data access patterns and floating-
point computations similar to the function evaluation,
Jacobian computation, and linear solves in the solution
of nonlinear PDEs discretized using a finite-element or
finite-volume method. More details on the application,
algorithm, and computational results can be found in [1],
[2], [3].

II. MESH-QUALITY OPTIMIZATION
Discretization methods are common techniques for

computing approximate solutions to PDEs [4], [5], [6].
These methods decompose the given domain into a finite
set of elements, triangles or tetrahedrons, for example, to
produce a mesh used within an approximation scheme.
Several factors affect the accuracy of the solution to
the PDE computed: the degree of the approximation
scheme and the number of elements in the mesh [7]
and the quality of the mesh [8], [9]. Optimizing the
quality of the mesh prior to computing the approximate
solution can improve the condition number of the linear

systems solved [10], reduce the time taken to compute
the solution [11], and increase the numerical accuracy.
The savings in computational time from using the

optimized mesh can be substantial. One application we
investigated was to solve the Navier-Stokes equations
for a fluid with a moderate Reynolds number containing
a dilute suspension of particles [12]. The approximate
solution was obtained by applying a spectral element
method to a hexahedral mesh. The original mesh had
many regular elements, while the optimized mesh lost
much of this structure. However, the spectral element
method applied required 29 hours to compute a solution
when using the original mesh, but only 20 hours when
using the optimized mesh, a 30% reduction in time.
The optimization problem we solve computes posi-

tions for the vertices in a given mesh to improve the
average element quality according to the inverse-mean
ratio metric [13], [14], a shape-quality metric measuring
the distance between a trial element and an ideal element,
a regular tetrahedron, for example. The objective func-
tion for the resulting optimization problem is nonconvex.
A simple inexact Newton method [15], [16] with an
Armijo linesearch [17] is used to solve the optimization
problem. A preconditioned conjugate gradient method
with a block Jacobi preconditioner is used to compute
the direction [18]. Each block is symmetric and positive
definite [1], [19]. Therefore, a Cholesky factorization
is applied to each diagonal block when computing the
preconditioner.
We implement a simple framework that reads the

description of a mesh from a file, constructs the un-
constrained optimization problem, calls an optimization
routine, and writes the solution back to a file. When
reading the mesh, we check it for inverted elements and
compute the vertices on the boundary of the mesh. The
computation of the boundary vertices involves applying
a radix sort to the list of faces and extracting the faces
that appear exactly once, since these define the boundary.
Optionally, the vertices and elements in the mesh can
be reordered by using a breadth-first search ordering to



improve the locality of reference before applying the
optimization routine. This feature is enabled by default
but can be disabled by defining the NOREORDER flag
when compiling the code.
The average inverse mean-ratio objective function re-

quires that a value of plus infinity be returned whenever
the volume constraints are not satisfied. Therefore, if
the volume of at least one element is smaller than
1.0 × 10−14, we consider the volume constraints to be
violated, and the objective function is set to plus infinity.
The gradient and Hessian of the objective function are

calculated analytically by assembling the gradients and
Hessians for each element function into a vector and
symmetric sparse matrix. Only the upper triangular part
of the Hessian matrix is stored in a block compressed
sparse row format. Each 3 × 3 block of the Hessian
matrix corresponds to a vertex-vertex interaction in the
original mesh. The number of indices we need to store is
reduced by using the block scheme. In order to facilitate
the assembly of the Hessian matrix, once the sparsity
pattern is obtained, an additional vector is calculated that
tells the offset into the Hessian matrix data vector where
the element Hessians are to be accumulated. The gradient
and Hessian of the elements with respect to vertices fixed
on the boundary of the mesh are ignored.
The code for calculating the gradient of the element

function uses the reverse mode of automatic differentia-
tion [20], [21]. The code was written and refined by hand
to eliminate unnecessary operations, resulting in a more
efficient gradient evaluation. The Hessian calculation
uses the forward mode of differentiation on the gradient
evaluation. The resulting code was written by using
matrix-matrix products for efficiency. An evaluation rou-
tine that computes only the gradient of the element
has also been coded that requires fewer floating-point
operations than the function plus gradient evaluation. A
similar routine has been provided to compute only the
Hessian evaluation.
The complete algorithm is as follows.
1) Obtain a description of the mesh.

a) Read the mesh from a file.
b) Find the boundary vertices by computing the
exposed faces in the mesh.

c) Check the resulting mesh to ensure that the
consistent orientation conditions are satisfied
at the initial point.

d) Reorder the mesh by using a breadth-first
search order starting from the vertex farthest
from the origin.

2) Optimize the mesh.
a) Compute the sparsity pattern for the Hessian

matrix.
b) Perform a function and gradient evaluation at
the initial point.

c) If ‖∇F (xk)‖2 < τ or the iteration limit is
reached, then go to Step 3.

d) Compute the Hessian matrix, and calculate
the block diagonal preconditioner and factor-
ization.

e) Apply the preconditioned conjugate gradient
method to solve

∇2F (xk)dk = −∇F (xk).

i) Compute the current residual.
ii) Stop if the relative residual is small

enough, a direction of negative curvature
is encountered, or the conjugate gradient
iteration limit is reached.

iii) Perform matrix-vector product to obtain
direction.

iv) Update iterate, residual, and got to step
2.e.ii.

f) Perform an Armijo linesearch.
g) Update the current iterate, objective function,
and gradient, increase the iteration count, and
go to Step 2.c.

3) Output the mesh.
a) Apply an inverse permutation to put the data
back into the original ordering.

b) Write the optimized mesh to a file.

III. PERFORMANCE ASSESSMENT
The most time-consuming phases of FeasNewt are

the gradient evaluation (gFcn), Hessian computation
and assembly (hOnly), and sparse Matrix-vector product
(matmul, the computational kernel of the conjugate gra-
dient method used for linear solves). The input meshes,
as created by a mesh generator, exhibit poor spatial and
temporal locality. Consequently, FeasNewt implements
an optional data- and iteration-reordering transformation
phase. Data is reordered by using a hypergraph breadth-
first search, and iterations are reordered by using con-
secutive packing on the iteration hypergraph. We have
compared this reordering strategy to several other data-
and iteration-reordering strategies and concluded that
this strategy is optimal in most cases and nearly optimal
otherwise [22].
With data- and iteration-reordering enabled, sparse

matrix-vector product is memory-bandwidth limited on
contemporary microprocessors. Given the reasonable as-
sumption that the Hessian and vector are too large to fit
in cache, each block index of the Hessian (integer), every

2



nonzero value of the Hessian (real), and every element of
the input vector (real) must be read and every element of
the output vector (real) must be written. The length of the
vectors is vd, and there are v diagonal blocks, each with
d(d + 1)/2 nonzero values, and e off-diagonal blocks,
each with d2 nonzero values, where v is the number of
vertices in the mesh, e is the number of edges, and d
is the number of dimensions. The number of floating-
point operations is 2d2 for each diagonal block and
4d2 for each off-diagonal block. Therefore, assuming 4-
byte integers and 8-byte double-precision floating-point
numbers, the maximum achievable performance is

2d2(v + 2e)
4e + 8d(2v + v(d + 1)/2 + ed)

× Bandwidth (1)

For the three-dimensional case considered here, the limit
is

9v + 18e

48v + 38e
× Bandwidth (2)

For a representative mesh (ductbig), v = 177, 887 and
e = 2, 359, 092, so the maximum achievable perfor-
mance on a system offering 3000 MB/s of sustained
memory bandwidth is .45 × 3000MF/s = 1.35GF/s.
Figure 1 shows the achieved performance for the
FeasNewt application, relative to this memory bandwidth
limit.
Without data- and iteration-reordering, the number of

cache misses increases dramatically. On a 2.2 GHz Intel
Xeon with 512 KB L2 cache, the number of TLB misses
increases by a factor of more than 20, with an increase
of nearly two orders of magnitude in the matmul routine,
and the number of L1 and L2 misses increase by 40%
and 160%, respectively. The resulting increase in run
time is more than a factor of 2. Figure 2 shows the effects
of reordering for the three main phases.

IV. COMPILING AND RUNNING FEASNEWT

FeasNewt can be downloaded from http://www.
mcs.anl.gov/˜tmunson/codes/fnbench.tgz. Af-
ter unpacking, it can be compiled by editing the Makefile
to indicate the compiler (CC) and flags (CFLAGS). It can
then be executed by using

./tetOpt <inputfile> <outputfile>
For benchmarking, ductbig.mesh and foambig.mesh
in the data directory are recommended as input files and
/dev/null is a suitable output file. The remaining mesh
files (duct*, foam5, gear, hook, and tire) can be used
as training data. In order to build FeasNewt with data-
and iteration-reordering disabled, the NOREORDER flag
should be defined, for example by using CFLAGS=-O3
-dNOREORDER.

FeasNewt has been compiled and run on most Unix-
like systems, including Intel and AMD processors run-
ning Linux, Apple workstations running MacOS X, the
IBM BlueGene/L running K42/Linux, Intel processors
running Windows with cygwin, and Sun workstations
running Solaris. Performance results for these various
platforms appear in Table I.

V. CONCLUSIONS

FeasNewt is a portable and compact application that
is both important in its own right and an excellent sur-
rogate for nonlinear PDE simulations using unstructured
meshes. Such applications are among the most difficult
to optimize on modern computer architectures, with deep
cache hierarchies and limited memory bandwidth. The
data- and iteration-reordering in FeasNewt can be dis-
abled, allowing one to evaluate the ability of a compiler
or architecture to mitigate the effects of irregular data
access patterns in such applications. The gradient and
Hessian evaluations in FeasNewt include many calls to
intrinsic functions such as pow, a characteristic shared
with many scientific applications and a feature that
enables one to assess the quality of the math library
implementation.

ACKNOWLEDGMENTS

This work was supported by the Mathematical, Infor-
mation, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy,
under Contract W-31-109-ENG-38.

REFERENCES
[1] T. S. Munson, “Mesh shape-quality optimization using the inverse

mean-ratio metric,” Argonne National Laboratory, Argonne, Illi-
nois, Preprint ANL/MCS-P1136-0304, 2004.

[2] L. F. Diachin, P. Knupp, T. Munson, and S. Shontz, “A com-
parison of two optimization methods for mesh quality improve-
ment,” Argonne National Laboratory, Argonne, Illinois, Preprint
ANL/MCS-P1239-0305, 2005.

[3] T. S. Munson, “Optimizing the quality of mesh elements,”
Argonne National Laboratory, Argonne, Illinois, Preprint
ANL/MCS-P1260-0605, 2005.

[4] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite
Element Methods. New York: Springer-Verlag, 2002.

[5] M. O. Deville, P. F. Fischer, and E. H. Mund, High-Order Meth-
ods for Incompressible Fluid Flows. Cambridge: Cambridge
University Press, 2002.

[6] L. N. Trefethan, Spectral Element Methods in MATLAB.
Philadelphia, Pennsylvania: SIAM, 2000.

[7] I. Babuška and M. Suri, “The p and h-p versions of the finite
element method, basic principles and properties,” SIAM Review,
vol. 36, pp. 578–632, 1994.

[8] M. Berzins, “Solution-based mesh quality for triangular and
tetrahedral meshes,” in Proceedings of the Sixth International
Meshing Roundtable. Sandia National Laboratories, 1997, pp.
427–436.

3



0

500

1000

1500

2000

2500

Hessian Gradient Matmul

Peak

Memory Bandwidth
Limit
Original

Reordered

Fig. 1. Achieved performance (in MFlop/s), relative to the CPU peak and the limit imposed by the memory bandwidth of a 2.2 GHz Intel
Xeon, for sparse matrix-vector multiplication, with and without data- and iteration- reordering.

0
0.2
0.4
0.6
0.8
1

MM Hess Grad

Orig.
Reord.

0
0.2
0.4
0.6
0.8
1

MM Hess Grad

Orig.
Reord.

0
0.2
0.4
0.6
0.8
1

MM Hess Grad

Orig.
Reord.

0
0.2
0.4
0.6
0.8
1

MM Hess Grad

Orig.
Reord.

Execution Time L1 misses

L2 misses TLB misses

Fig. 2. Effects of data- and iteration- reordering on cache misses and run time for the matrix-vector multiplication (MM), gradient (Grad),
and Hessian (Hess) phases of the FeasNewt application on a 2.2 GHz Intel Xeon processor, normalized against the original ordering.

4



TABLE I
PERFORMANCE OF THE FEASNEWT BENCHMARK ON SEVERAL PLATFORMS. TIMES (IN SECONDS) REPORTED ARE FOR THE DUCTBIG MESH

AND EXCLUDE FILE I/O.

Processor GHz OS Compiler Flags Runtime MFlop/s
PowerPC G5 2.0 MacOS X gcc 4.0 -fast 22.4 673
Opteron 1.6 Linux gcc 3.3 -O3 27.6 546
Xeon 2.2 Linux icc 8.1 -O3 -xN -ipo -static 33.1 455
Xeon 2.2 Linux gcc 3.4 -O3 37.7 400
Pentium M 1.4 Windows gcc 3.3 -O3 41.2 366
BlueGene 0.7 K42 xlc 7.0 -qbgl -qtune=440 -O5 -qarch=440 64.7 233
PowerPC G4 1.25 MacOS X gcc 3.3 -fast -mcpu=7450 88.4 170
SPARC 0.9 Solaris cc 5.1 -fast 106. 142
SPARC 0.9 Solaris gcc 2.95 -O3 133. 113

[9] ——, “Mesh quality – geometry, error estimates or both?” in
Proceedings of the Seventh International Meshing Roundtable.
Sandia National Laboratories, 1998, pp. 229–237.

[10] J. Shewchuk, “What is a good linear element? Interpolation,
conditioning, and quality measures,” in Proceedings of the
Eleventh International Meshing Roundtable. Sandia National
Laboratories, 2002, pp. 115–126.

[11] L. Freitag and C. Ollivier-Gooch, “A cost/benefit analysis for
simplicial mesh improvement techniques as measured by solution
efficiency,” International Journal of Computational Geometry
and Applications, vol. 10, pp. 361–382, 2000.

[12] L. Zhang, S. Balachandar, P. Fischer, and T. Munson, Dec. 2004,
Private communication.

[13] A. Liu and B. Joe, “Relationship between tetrahedron quality
measures,” BIT, vol. 34, pp. 268–287, 1994.

[14] P. Knupp, “Achieving finite element mesh quality via optimiza-
tion of the Jacobian matrix norm and associated quantities,
Part II – A framework for volume mesh optimization and the
condition number of the Jacobian matrix,” International Journal
for Numerical Methods in Engineering, vol. 48, pp. 1165–1185,
2000.

[15] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method.
Philadelphia, Pennsylvania: SIAM, 2003.

[16] J. Nocedal and S. J. Wright, Numerical Optimization. New York:
Springer, 1999.

[17] L. Armijo, “Minimization of functions having Lipschitz-
continuous first partial derivatives,” Pacific Journal of Mathe-
matics, vol. 16, pp. 1–3, 1966.

[18] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, Pennsylvania: SIAM, 2003.

[19] T. S. Munson, “Mesh shape-quality optimization using the inverse
mean-ratio metric: Tetrahedral proofs,” Argonne National Lab-
oratory, Argonne, Illinois, Technical Memorandum ANL/MCS-
TM-275, 2004.

[20] C. H. Bischof, P. D. Hovland, and B. Norris, “Implementation
of automatic differentiation tools,” Higher-Order and Symbolic
Computation, to appear, 2004.

[21] A. Griewank, Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Philadelphia, Pennsylvania:
SIAM, 2000.

[22] M. M. Strout and P. D. Hovland, “Metrics and models for
reordering transformations,” in Proceedings of the Second ACM
SIGPLAN Workshop on Memory System Performance (MSP),
June 2004, pp. 23–34.

5


